
~ ~ C T I V E MACHJN~ANGUAGE I P R O G R A ~ I N C T

B u t l e r W . Lampson

University of California, Berkeley

'I..

Document No. 30.50.11

Revised October 11, 1966

Office of the Secretary of Defense

Advanced Research Projects Agency

Washington 2j, D.C.

b

4

E

c.;

,

-8lmtACT
1

I
I

An integrated system i s described fo r wr i t i ng and debugging programs

i n an interact ive environment. It includes complete f a c i l i t i e e for sym-
I

bolic examination and modification of the binary program and data which

can be used i n conjunction w i t h very powerful macro, conditional and s t r ing-

handling features.

200 l ines per second, so t h a t relocatable binary i s eliminated.

debugging, changes made i n the binary program can be automatically incor-

porated in to the symbolic.

programs t o be writ ten and debugged w i t h much less e f f o r t than is called

f o r by conventional techniques.

Assembly is d i r ec t ly in to core, a t a speed of about

During

The system as a whole permits machine language

1.

INTRODUCTION

The problems of machine language programming, i n the broad sense of

coding i n which it is possible t o L i t e each instruct ion out e l rpl ic i t ly ,

have been curiously neglected in the l i t e r a tu re .

problems which must be coded in the hardware lmguage of the computer on

which they are t o run, e i the r because of strfngent time and space requirements ,

or because no sui table higher l eve l language i s available.

There are s t i l l many
I

It i s a sad fact , however, t ha t R large number of these problems never

run a t a l l because of the inordinate amount of e f f o r t required t o write and

debug machine language programs.

t h i s obstacle, a great deal of time is wasted i n struggles between programmer

and computer which might be avoided if t h e proper systems were ma i l ab le .

Some of the necessary components of these systems, both hardware and software,

have been developed and intensively used a t a f e w in s t a l l a t ions .

progrnmmers, however, they remain as unfamiliar as other too ls which are

presented f o r the first time below.

I n the former category f a l l the most important features of R good

On those t h a t are undertaken i n s p i t e of

To most

assembler [1,2] : macro-instructions implemented by character subst i tut ion,

conditional assembly instruct ions, and reasonably f ree l inking of independently

assembled programs.

but r e l a t ive ly unfamiliar [5 , 6] ,

in te rac t ive environment, i n which the power of the computer i s rivailable a t R

console fo r long periods of time.

systems are operated today of course precludes interact ion, bu t programs f o r

small machines are normally debugged in t h i s way, and as time-sharing becomes

more wide-spread the interact ive environment w i l l become common.

The basic components of a debugging system are also known

For these the @ssen t i a l Prerequis i te i s an

The batch processing mode i n which large

2.

3.

It i s c lear t..at in te rac t ive debugging systems must have a b i l i t i e s

very d i f fe ren t from those of off- l ine systems.

intolerFble, so t h a t dumps and t r a c 8 are t o be avoided a t a l l coats. To take

Large volumes of output are

the place of dumps, select ive e x m i 1 at3on and a l te ra t ion of memory losat ions i s

provided.

system a t selected instruct ions.

switches-and-lights console debugging common on small m~chines without adequate

software. To t h i s end, type-in and type-out of information mus t be symbolic

ra ther than o c t a l where t h i s is convenient. The goal, which can be very near ly

achieved, is t o make the symbolic representation of an inst ruct ion produced by

the system ident ica l t o the or ig ina l symbolic writ ten by the user.

Is on convenience t o the user and rap id i ty of communication.

Traces give way t o breakpoints, which cause control t o re turn t o the

It is a.180 e s sen t i a l t o escape fyom the

The emphasis

The combination of an assembler and a debugger of t h i s kind is a powerful

one which can reduce by a factor of perhaps f ive the time required t o wri te and

debug a machine language program. A f u l l system f o r in te rac t ive machine language

programming (IMP), however, can do much more and, i f properly designed, need not

be more d i f f i c u l t t o implement. The basic ideas behind t h i s system are these:

c.!

1) Complete integration of the assembler and the debugging system, so t h a t

a l l input goes through the same processor.

together w i t h one of two d i f fe ren t languages serving the same purpose: t o specify

instruct ions i n symbolic form.

d i r ec t ly in to core (or i n to a core image on secondary storage).

output and relocatable loaders are thereby done away w i t h .

Much redundant coding is thus eliminated,

This concept requires that code be assembled

RelocatabLe

A remark on terminology: it w i l l be convenient i n the sequel t o speak of

the "assembler" and the "debugger" i n the IMP system.

understood in the l i g h t of the foregoing: d i f fe ren t parts of the sane language

are being referred to , rather than d i s t i n c t languages.

These terms should be

.
4.

2) Commands fo r ed i t ing the symbolic source progrm. The e d i t commands

simultaneously modify the binary progrm i n core and the symbolic on secondary

storage.

i n to the EIymbolic, and the labor o f keeping the l a t t e r current is a h s t eliminoted.

Corrections mad& during debugging are thus automatically incorporated

3) A powerful string-handling capabi l i ty i n the u.rsoinbler which makes it

qui te easy' t o write macros for compilirq algebr*j.ic expressions, t o take t i 'popiilur

example which con be handled i n H few other systems, b u t rsther clumsily. The

point i s not t h a t one w a n t s t o write such macros, but t h a t i n pa r t i cu la r appli-

cations one may want macros of 8 similar degree of complexity.

These matters are discussed in more d e t a i l i n the following. We consider the

assembler first and then the debugger, since the command language of the l a t t e r

makes heavy u8e of the assembler' B features.

Before beginning the discussion, it may be w e l l t o describe b r i e f l y t h e

machine on which t h i s system is implemented. It i s a Sc ien t i f ic Data Systems 930,

a 2 microsecond, single address computer with indirect addressing and one index

reg is te r . O u r system includes a d m which i s large enough t o hold f o r each user

a l l the symbolic fo r a program being debugged, together with the system, a core

image of the program and some tables. Backup storage of a t least th i s a ize is

e s sen t i a l f o r the edi t ing features of the IMP system. The r e s t of the system could

be implemented af ter a fashion wi th tapes.

The Basic Assembler
I

The input format of the a.ssembler was or ig inahd on the TX-0 at MIT. It

has been adopted by DEC for most of i t s machines, but is unknown or unpopular

elsewhere i n the indus t ry . Although it looks strange fit first, it has sub-

s t a n t i a l dvantaqes i n terms of simplicity, both for the user and for the system.

The l a t t e r i s a. non-negligible consideration, equally often ignored and over-
I

I

emphasized.

The basic idea is tha t the assembler processes each l i n e of input as an

expression (unless it i s a direct ive or macro cell) '4!

evaluated and the value is put in to core a t the word addressed by the location

counter, a f t e r which the location counter i s advanced by 1.

The expression i s

Expressions are

made up of operands, which may be symbols, constants, numeric or alpha-

numeric, and parenthesized subexpressions; and operators. Available operators

are +, -, *, /, .AND, .OR, .NOT w i t h t h e i r usual meaning and precedence;

.E (equals), .G (greater) , .GE, .L, .LE, .NE, which are binary operators w i t h

c;j

precedence less than +, and yield 1 or 0 depending on whether the indicated

re la t ion holds between the operands or not; and #, a unary operator w i t h lowest

precedence which causes i t s operand t o be taken as a l i t e r a l . This mems t h a t

it is assigned a. storage location, which is the same as the location assigned

t o other l i t e r s l s w i t h the same va.lue, and the address of t h i s location i s the

value of the l i t e r a l . Blanks have the following signific<mce: any a t r ing of

blanks not a t the beginning or end of an expression is taken RS a single plus

sign. Several

instruct ions may therefore be wri t ten on one physical l i ne .

An expression is terminated by carriage return or semi-colon.

This t r i v i a l feature

proves i n pract ice t o have s ignif icant advantages.

5 .

It i s pot immediately clear how instrmctions are conveniently

writ ten as expressions, and i n fact the scheme used depends on the fac t

t ha t the object machine is a single-aildress, word oriented computer with

a reasonable number of modifiers i n a single instruction. It would work

on the PDP-6, but not on the ITM 7030.

(2

The idea i s sirnvle: all q e r a t i o n code rnnemonics are predefined 1

symbols with values equal t o the octal encodings r J f the instructions.

On the SDS 930, for instance, LDA (load A) i s defined as 7600000 (all

numbers are i n oc ta l) ,

When the convention about spaces i s invoked, the expressirm

The expression LDA+200 then evaluates t o 76OolzOO.

LDA 200

evaluates t o the same thing, which i s ju s t the instruction we expect

*om t h i s symbolic l i n e i n a conventional assembler.

Modifiers are handled i n the same s p i r i t . In the 24 b i t word of t he

930 there i s an index b i t , which is the second from the lcft, and an in-

direct b i t , which i s the tenth. With the predefined symbola

1=:40000

x~-20000000

the expression LM I 200 X

evaluates t o 27640200. In more conventional Tom it would look l i k e

t h i s : LDA* 200,2

There i s l i t t l e t o choose between them f o r brevity or c lar i ty .

the order of the terns i n the expression is arbitrary.

The greatest advmtages of the uniform use of expressions accrue t o

Note tha t

the assembler, but the programmer gains a good deal o f f l ex ib i l i t y .

Examples w i l l readily occur t o the reader.

U s i n g t h i s convention the kplementation of the basic assembler i s

very simple. Essentially a l l tha t i s required I.s an expression analyzer

6.

and evaluator, which w i l l not run t o more than three o r four hundred in-

s t ruc t ions on any machine.

no such thing as re loca tab i l i ty .

Because all assemblyiis i n to core, there is

7 .

TFro ra ther canventiun&d mrJthodr are Trnvidctl f o r defining symbols.

A symbol appearing at the beGinning of a l i n e and followed by a crmna 3.s

defined t o be t h e current value of the locat ion counter.

may not be redefined.

SYM=46 00

Such a symbnL

I n addition, a l i n e such as

defines m4. Any e a r l i e r def in i t ion i s simply overridden.

The r i g h t s ide m a y of course be any expression which can be evaluated.

The spec ia l symbol . refers t o the locat ion counter. It may appear

on t h e l e f t o f a = sign. Thus, the line

A, .=. 40
i s equivalent t o

A BSS 40

i n a conventional assembler.

Note that the f irst punctuation character i n a l i n e of input t o t h e

assembler must be coma& or space. The character . is not a punctuation

character, bu.t behaves exactly like a l e t t e r . Symbols reserved by t h e

system begin with dot cjrdinarily. For convenience i n forming negative

addresses, t h e symbol .. i s provided with a permanent value such t h a t ..-1

is -1 truncated t o the address f i e l d . On the 930, a two's complement

machine with a 14 b i t address f i e l d , .. is 40000.

Strings of characters encoded in ASCII may be written surrounded by rringlo

or double quotes,

it is equivalent t o the number obtained by left-justifying it in a 24 b i t

word.

or ". If the string is lees than 4 characters in length,

c.; Otherwise, it must appear alone on a l ine and generates enough word61

t o accommodate all i ts characters.

and & (Bee below); those i n double quotes are taken l i teral ly .

Strings i n simple quotes are scanned fo r : rl)
v

The characters space * signal a colmrent, which is ignored up t o the next

carriage return. An i n i t i a l * also has t h i s effect .

There remains one point about the basic assembler which i s cruciaLLy im-

portant t o the implementation: the treatment of undefined symbols, When an

expression is encountered during assembly, there is no guarantee that it can be

evaluated, since all the symbols in it may not be defined. Th i s is the reason

why most assemblers are two pass: the f i rs t pass serves t o define the symbols.

The increase i n speed obtained by looking a t the symbolic only once is so great,

however, tha t it is worth a good deal of trouble. Even i f every expression

contains an undefined symbol on the first pass, it e t i l l takes only one-fifth

as long t o evaluate the already analyzed expressions ap1 t o read the input again,

t h i s f o r a program with no macros.

defined expressions expl ic i t ly .

The assembler therefore keeps t rack of un- c-
There is a general way of doing th i s , i n which the undefined expression,

8.

and

translated fo r convenience into reverse Polish, is added t o a l ist of such

expressions, together w i t h the address of the word it i s t o occupy. A t sui table

intervals t h i s l i s t is scanned and all the newly defined expressions are evaluated

and inserted i n the proper locations. For complex expressions there is no avoiding

some such mechanism, and it has the adventage of simplicity. It is, however,

wasteful of storage and also of time, since an expression may be examined many

times while it is on the l ist before it can be evaluated. One important case can

be treated much more efficiently, and this i s the case of an instruction w i t h an

undefined address, which includes perhaps 90 per cent of the occurrences of

undefined expressions.

For example, when the assembler 886s this code:

x, BRU A *BRANCH UNCONDITIONAL
I D A B

A, STA C

i(_i

9.

the instruction a t X has an undefined address which becomes defined when

the l abe l A i s encountered. This s i tuat ion can be kept track of by putting

i n the symbol table entry f o r A the location of the first word containing A

as an address. In the address of this word we put the location of the second

such word, and 80 build a l i s t through all the words containing the undefined

symbol A as an address.

point t o i tself .

i n the proper value.

only A, since there is then no other information which must be preserved.

t ha t no storage i s wasted and t ha t when A is defined the correct address ce~n

be f i l l ed in very quickly.

The l i s t i s terminated by making the addrees f i e l d

When the symbol i s defined we simply run down the chain and f i l l

This scheme w i l l work a8 Long &B the address PieM. contains

Note

I

LO. ,

Strings and Macros

The description of the basic assembler i s now complete, except f o r a f e w

non-essential de ta i l s , and we turn t o the macro and s t r i n g handling f a c i l i t y .

There i s a uniform method for delimiting s t r ings of characters, which mA;y be

i l l u s t r a t e d by the assignment of such a s t r ing as the value of a symbol:
,
1

A = <B,(C,D),E,F >

In order t o describe the r e su l t of using A after t h i s assignment, we intro-

duce a d is t inc t ion between the appearance of B. symbol i n a l i t e r a l and i n a

normal context.

A symbol inside s t r ing brackets < > or single quotes or i n amacro argument

i s ' i n a l i t e r a l context; all other contexts but one are normal.

t ex t , t h e value of the symbol, whether a s t r i n g o r a number, is subst i tuted f o r

the symbol. In a l i t e r a l context, on the other hand, the characters of the

symbol are passed a unaltered.

assignment i s an exceptional one; such a symbol is of course not normally

evaluated.

In a normal con-

The case of a symbol on the left side of an

To permit the value of a symbol t o be obtained i n a l i teral context, the

convention i s introduced that a colon preceding the symbol causes it t o be

evaluated if the colon is at the top l eve l of parentheses, brackets and quotes.

If i t s value i s a s t r ing, the characters of the s t r ing replace the symbol; i f

it i s a number, the shortest s t r i n g of d i g i t s which can represent the number i n

the prevail ing radix replaces the symbol. Colon in a normal context i s i l l ega l .

For convenience i n delimiting s t r ing names a second colon may follow a name

preceded by a colon.

otherwise ignored. Thus if

This second colon serves only t o delimit the name and i s

A B = o E Y D

<:AD = C X Y a and <:AB:CLP =: <XYZCDD then

11.

There are times when it is desirable t o force evaluation of a symbol i n
i

a normal context when it would normally pass unevaluated.

preceding the symbol has this e f fec t ; it is exactly l ike : except tha t it ac ts

only in a normal context. Continuin6 the previous example: '

The character &

--. -
I .-

/

VW&AB=VWXYZ and nthc), L ~ J \ B ~ ~ P R I; X Y ~ P Q r a c u ~ t , ; i

&AB = 12 is equivalent t o XYZ = 12

A s t r ing may be thought of as having two kinds of structure:

1)

2)

It i s composed of a sequence of characters

It is composed of a sequence of substrings delimited by cammas
not enclosed i n parentheses, brackets, o r quotes.

With reference t o the first structure, a single character may be selected by
'i"' "

a subscript enclosed in brackets. Referring t o the s t r ing assigned t o A,' we

note t h a t

, ,

A [2 1 i s <,>, AE61 is Q, and A171 is <)>.

BY an obvious extension of t h i s notation,

A[3,71 is<(C,D)> and A C 9 , l l l is < E , D .

Subscripts which reference the substring structure are enclosed i n

parentheses. Thus

A (1) = <ID and A(2) = <C,D>.

Note tha t a single pa i r of parenthem surrounding a substring is removed.

Subscripting may be i terated:

A (2) (2)<Ib.

Subscripting i s applied only t o a string-valued symbol which is i n a noma4

context or is evaluated by a colon.

an assignment forces it t o be evaluated even i f it is not preceded by a colnn.

Subscripting of a name on the l e f t side of

Two operations, .L and .LC, determine respectively the number of substring@

and the number of characters i n the i r arguments. Thus

.L(A)&, .L(A(2))=2 and . I C (A) = l l .

12.
I

~

Having dealt w i t h the general machinery frxr handling strings, we now

turn t o the s l igh t refinement which adds macros w i t h arrQumentn t o the system.

This takes the form of a modification t o the ordinasy l i ne assigning a

string t o a symbol, which permits an argpment s t r ing t o be specified. Thus

STORE <ARG> =

<.RPT.FOR T = l , .L(ARG(2)),1
<STWIG(1) ARG(2)(T)>>

defines a macro w i t h two arguments, the first a string which, when

appended t o < S W creates a store instruction, and the second a l is t of

locations t o be stored into.

characters beginning w i t h the first following non-blank character and

Whenever STORE is used, the s t r ing of

ending w i t h a l i n e delimiter or unmatched r ight pmenthesis is made the 1
value of ARG.

fo r it as usual.

The string which is the value of STORE is then substituted

STORE might be called with

STOIiE A, (Sl,S2,S3)
I

which is, because of the definition, equivalent t o ,
,

.RFT.FOR T=1,3,1 ,

<STA G1, S2 ,S3>(T)> ,

To complete the expansion we must consider t h e .RFT directive which

has been used above. This directive causes the string which folluws t o be

scanned repeatedly. It t&es one of two forms:

1. .RPT N C...>

which causes N repeti t ions

2. .RPT.FOR J=nl,n2,n3 a +>

which causes (n2- n 1) I a t - l repeti t ions with

d then incremented by n3 u n t i l it exceeds

e. The n3 nrrty be elided if it i s 1.

J i n i t i a l l y set t o nl,

n 2 . Zero repeti t ions m e

I 1 ..--

I

The STORE macro call. above may n w be seen t o expand into

STA 81
STA $2
STA S3

~

We i l l u s t r a t e with two f'urther examples. The first i s a generalized

IvlUvE rfiacro which takes a8 i ts asgmenta a sequence of pairs OP lists. The

first, l i s t of' each pair s p c i f i e a the locations t o load from, while the

second Gives the corresponding locations t o store into, A l i s t ma;y of

course have only one element.

M W E <ARC> =
<.RPT.FOR Sl=l, .L(ARG),2
-YL'HJX LINE STEPS THROUGH THE PAIRS OF LISTS
<.RFT.FOR S2=1, .L(ARG(Sl))
?J!HIS LIK@ STEPS THROUGH THE EI;GMENTS OF OIQE PAIR CIF LISTS

< LDA AFtG(Sl)(S2)
STA ARG(Sl+l)(S2) >>>

thus

becomes

L D A A
STA I!
LDA C
STA D

Suppose tha t we have some two-word data structures t o manipulate.

We em attach t o the name of each structure a s t r ing of the form <A,El3.

A i s the address of the f irst word of the structure, B of the second.

A macro can do t h i s and -sign the storage.

. . .

Tw <ARG> =

< TWSlrlSWS+l

ARG(l)~ :TWS,TW:TWSD

TW&TwS, 0
!rWms1, 0

TWs*s+2 > , I

Rm, i f we c a l l TW twice a f t e r s e t t i ng TWS t o I:

T W k
T W B

I we w i l l have given A the value W1 ,TWD and B t h e value CTW3,TWb and

def'ined the four TW syrribol.~.
I

We CEUJ n m use A and B i n t he MUVE macro. I n fact
~

M W A,B I

expands t o

IJDA TW1
STA TW3
LDA Tw2
STA TW4

With the addition of one more device we can proceed t o t h e def in i t ion

of a very grandiose macro. Tne d i rec t ives .IF and .ELISF, used thus:
*If? El. <...>
*ELSF E e <.,.>

.E?SF. zn < . . .>
cause each E . i n tu rn t o be evaluated u n t i l one i s greater than G. The

s t r i n g following t h i s one is then scanned and the r e s t of' the s t r u c t w e
1

ignor e'a .
*THIS VACRO COMPILES AD ARITHMETIC EXPRESSION CONSISTIMG OF SINGLE- I
*LET'lT3 VARIABLES, BINARY + AND - AHD PKREXTHESES.
Y U C R O ERROR IF TKE EXFR3SSION I S NOT \?ELL FOBmI).

I T CIs;LIn~ TIG

RRITH ' a G > =

STK=<*> *D!IITIALIZE TJB S T M K WHICH HAPIDLES
*PARENTHESR3

J=1 *II\JITIfUIB THE CHARACTER WIN!FER
T I LO * I N I T I A L I Z E THI? TE24PORARY :;TORAL;E C O W R

< EXPR=d:ARG(l) .> *APPEND , TO THE EXPRESSION

*IF TEMPORARY STORAGE I S REQUIRED IT I S ASSIG1VED AS "EMPI.,
*TEMP2, ETC., &I'D T I KEEPS TRACK OF THE NEXT AVAILABLE IIOCATION.

X1 *THIS IS THE MACRO WHICH DOES THE WORK
.IF T .NE ' . ' <ERRoII> 7

*CHECK THAT EXPRESSION WAS NOT TERMINATED BY A RIGHT PARENTHESIS.

VKTS MACRO C O U C T 3 A Z U B - E X ~ s S I O l l CONSI3TIRG OF OPEBANDS
*STRUNG TOGETHER WITH 3 UMD -. IF THE Q+~EXPRESXIC~N I S A ITINGI;F:
*VARIABz;E, COP (CURRENT OPERAND) W I L L BE THAT VARIABLE Ol'T EXIT.
*OTI.IEHWISE I T WILL BE EI4FJITy.

x1 =
< COP L <-> *ENSURE THA!I! COP I S NOT EMPTY INZTIAWN

*AN ESIF'IY COP MEANS THAT CODE HAS BEEN ASSEMBLED LEAVING A VALUE
*IN THE A REGISTER.
* W C H IS THE CURRENT OF'ERAND.

IF COP I S A LETTER, I T IS TKE VARIABLE

OPERAND %ET TIB FIRST OPERAND
.RPI' .FOR E~1,1,0 *E IS SET TO 2 WHEM THERE ARE NO MORE $- OR -

*SIGNS
< T=' :MPR[J] ' +EXPECTING RN OPERATOR OR TERMIHRTIOM

J=J+1
.IF T .E I , ' .OR T .E I) ' U3=D

*SET E TO TERMrNm THE LOOP IN THIS CME.
I

.ELSF T .E I + ' <COMPILE ADD,ADCD

.ELSF T .E I - ' <COMPILE SUB,(CRA;ADD)>
I

*IF A -I- OR - I S PREgEMT, GET T€E SECOND OPERMID AND CCNPILE CODE.

.ELSF 1 <ERROR> *OTHERWISE, ERROR
> > *CLOSE LOOP AlQD MACRO

-HIS MACRO COLLECTS THE SECOND O P E W OF A BINARY OPERATOR AlqD
*CONSTRUCTS CODE TO PERFORM THE SmCIFIED OPERATIOH. I T USES ITS
*FIRST ARGUMENT IF THE FIRST OPERAND IS IN TKE A REGISTER, ITS
*SECOND A R G W N T IF THF: SECOND OPERAND MUST BE I N A AND THE FIRST
TAKEXf FROM MEMORY.

I

COMPILE <CARG> =

.IF . U (C O P) .G 0
< ol?ERA.m %ET THE SECOND OPERAND

+IM THIS CASE THE SECOND OPERARD IS A S m L E VARIABLE.

< .IF .LC (m o p) .G 0 €LMpRNOP,

*IF THE FIRST 0 " D I S ALSO A VARIABLE (OR A TEMP LOCAICXON)
*BRING I T INTO A

CARG(1) C O P > *Am COMPILE corn
.ELSF 1 <CARG(2) PREVOP,

*COTHERWISE THE SECOND OPERAND MUST BE IlV A, AND THE FIRST IPB MEMORY

COP& > >

WET COP TO IPSDICATE A VALUE IIi A AND CLOSE THE MACRO.

16.

\ .IrTHIs MACRO COLLECTS AN OPERAM), WHICH MAY BF: A PARENmESIZED
*SUBEXIBESSION

I

0pERAND.L
< T = ':EXpR[J]' WET THE NEXT CWIRACTER

, J= J+l +IT SHOUIJ) BE A TdETTER GR (I
r 1 .IF T .E '('

< ,IF .U(COP) .E 0

ALREADY HAVE A VALUE TN A IT MUST BE SAVED I N TEMPORARY
GE WHILE THE -SSION IS EVAWATED.

I

< T I - T I +1:
STA rnP8mI WONSTRUCT A TEMP IDCATION TO SAVE IT IN
COP..CICEMP:TD > *AND REMEMBER IT IN COP
sTK4 :COP, : S T D
x1
. I F T .NE ' (' -OD
E d
pREVoP& : sTK(1)>

*STICK COP ON T€B FRONT OF STK

*RESET THE TERMIMTION SWITCH FOR X 1
*SET PREVOP TO THE OLD COP WHICH WAS SAVED

sTK<:sTK(2, .L(STK))> >

*REMOVE OLD COP FROM STK AND TERMINATE THIS CASE. XI. HAS SET COP

.ELSF T .GE ' A ' .AND T .LE '2'

(RECALL THAT THE CHARACTER CODE I S A S C I I)

PREVOPa(:COP,
COpo(:EXFR[J-l]> >
.ELSF 1 <EIsROD >

This macro, called by I

ARITH ((A+B)- (c-D))

STA TEMP1

es l ines in the defini t ion which actudlly generate
I

orwy stornge 1oert.tion TPMFl mucrt bo defined uleevth~ro.
I
I

, ementation of a l l t h i s i s quite straightforward. When & atrinfl 18

is collected character by character, due attention being paid t o
I
I

Bands, brackets and quotes, and stored away. When it i s referenced,

ich delivers characters to the assembler, which we w i l l cerll

1 I

CHAR, is switched from the input medium t o the saved strbg. "hi8 process

is of course recursive.

characters ends, CHAR 1 s switched back t o the s t r i n g it was working on before.

I I A l l the various occurrences of st r ings are treated perfect ly uniformly, except

When the s t r ing which i s the current source of
I

t ha t i n the case of macro definit ions the substrings of the argument s t r ing
I

1 are delimited when the l a t t e r i s collected t o improve the efficiency.

arbi t rary nesting of the various constructs i s possible because of the reeur-

siveness of the s t r i n g collection and reference routines.

Perfectly

I
I
I

I

I
I I n the in te res t s of efficiency the . I F directive is not handled i n t h i s

way, since i ts subject s t r ing i s scanned ei ther once or not a t all. A l l tha t

is necessary i s a flag which indicates whether an .ELSF direct ive is t o be

I considered or ignored.
I

I
The debugging system

f - \
An interactive debugging system should not be designed for the occasional

user, Its emphasis must be on completeness, convenience and conciseness, not I
on highly mnemonic commands and self-explanatory output,

b i l i t i es required are quite simple in the main, but the form is a l l important

The basic capa-

because each command w i l l be given so many times.

One essential , completely symbolic input and output, is half taken cart? 1
I

of by the assembler.

word t o be printed i n symbolic form, the symbol table i s scanned fo r an exact

match on the opcode bits.

The other half i s easier than it might seem: given a I

i
If no match is found, the word is printed as a

I

number, Otherwise the opcodc mnemonic i e printed, indirect and index b i t8 &re

checked and the proper symbols printed, and t h e table is scanned for the largeart

symbol not greater than the remainder of the word.

followed if necessary by a + and a constant.

I
I

I

This symbol i B printed out, I

,

c I

I
I

J

c,

c:

18.

The most fundamental commands are single characters, posaibly preceded

by modifiers. Thus t o examine a regis ter the user types

/~1-3 ; LDA I MRIS+2

where the system's reeponsc i s printed in capitals. This command may be

preceded by any combination of modifiers:

C for printout i n constant form 1

S
0 for oc t a l radix
D for decimal radix
R for re la t ive (symbolic) address
A fo r absolute address
H
I
N
L

fo r printout i n symbolic form

for printout as A S C I I characters
for printout as signed integer
for no printing of addresses
(load) fo r no printing of regis ter contents

The modifiers hold u n t i l the user typea a carriage return or gives another

/ command.

For examining a sequencre of registers, the comands + and - are available.

The former examines the preceding register, the l a t t e r the following register.

I n the absence of a carriage return the modifiers of the l a s t examination hold.

The + command examines the regis ter addressed by the one l a s t examined.

The contents of a register may be modified after examination simply by

Note that the assembler i s always par t of typ ing the desired new contents.

the command processor, and that debugging canrmands are differentiated by their

format from words t o be assembled (as noted above, an assembler lince has comma

or space as i t s first punctuation character, and a l l debugger l i nes have some

other i n i t i a l pyctuat ion character).

i n macros, so tha t very elaborate uperations can be constructed and then calladl

on with the twolor three characters of a mmro name.

Furthermore, debugging coxnmands may ocaur

,

To increase the f l ex ib i l i t y of debugging macr08, the unary operator @

!Fh$ value of @ SYM 3 i s the contents of location SYN 3. With i s defined.

this operator macroQ may be defined t o type out words depending on very
,

I I complicated conditionra. A simple example is ! c I I

*SCAN THROUGH ALL OF STORAGE STILRTIIVG AT !FHE UICATIOIB GIVEN BY
.#TfEE FIRST ARGlJMEXIT

.S= .IF' @TEm .E A(2)

*IF THE CURRENT IDCATION MATCHES THE SECOND ARGUME@I!, TKE SCAN IS OlfER
I

</TEMP; *mINT OUT TIFIE CONTErnS
TEMplrTEMp *SAVE THE ADMSESS
-37777 *Am TERMmm THE SCAN

:
>>>

Called w i t h TG 100,20

it w i l l type out the first location after 100 with contents greater than 20. I
Another important command cau6es an expression t o be typed i n a specified I

I

I format. Thus i f SYM has the value 1 5 3 then ,

f-
would be the result of giving the = command.

but the normal mode of typeout is constant rather than iymbollc.

expression is given, the one moat recently typed is taken.

above command, the user might t r y

A l l the modifier8 are available L/'
I

If no I

~

~

Thua, after the

9.1; SYM (the system's response, the symbolic equivalent of
153, follows the ;)

I

It i s often necessary t o search storage for occurrences of a particular ~

word. This may be done with a macro, a8 indicated above, but long aearches

would be quite slow. A farater search can be made With

?expression;
I

I

I which cause8 aU the locations matching the qec i f i ed expresaion t o be type4

The match may be masked, and the bounds of the search are adjvstable, I This colgglana

takes all the typeout modifiers as w e l l as

I E which searches for a specified effective addresa
l

c,
(including indexing and indirect addressing)

'30.

X which searches for a l l exceptional words (which do not match). -
For d d i t i o n a l f l e x i b i l i t y the user may specify 8 macro which w i l l be executed

each time a matching word i s found.

In addition t o being able t o examine and modify h i 8 program, the user a lso

needs t o be able t o run it.

wi th ,G location

If he wishes t o monitor i t s progress he may inser t breakpoints a t cer ta in locations

with the command

,B location

To t h i s end he may start it a t a specified location

This causes execution of the program t o be interrupted a t the specified location.

Control returns t o the system, which t,ypes some useful information and awaits

fur ther commands. An al ternate form of t h i s command is

,B location,macro name

which causes the specified macro t o be executed at each break, instead of

returning control d i rec t ly t o the typewriter. Very powerful conditional t racing

may be k n e i n t h i s way.

After a break has occurred, execution of the program may be resumed with

the ,P command.

the breakpoint has been passed n timehthe form

The breakpQint i s not affected. To prevent another break u n t i l
5

\n; may be used. Modifiers may precede the command.

To s tep through the program instruction by instruction the command ,S

m&y be used instead of' ,P.

breaks again.

f i l l y automatic t race ha8 been deliberately omitted, but presents no diff i cu l t l ea

In principle.

It allaws one instruction t o be executed and then

$n; allows n inatructions t o be executed before breaking. A

THE EDmcOR I
P- There remains one feature o i great bportanoe in the IMP aystem, the

symbolic editor.

described, for modifying the contents of core. These modificationa,

however, are not recorded i n the symbolic version of the program.

permit t h i s t o be done, so tha t reloading w i l l r esu l t i n a correctly updated

The debugger procides facilities, which have already been

To
7

__ -
binary program, several commands are available which act I both on the assembler

binary and on the symbolic.

This operation i e not as straightforward as it might appear, since

there is no one t o onajcorrespondence between l ines of symbolic and words

of binary. Addresses given t o the debugger of course refer t o core locations,

but for edit ing it is more convenient t o address l ines of symbolic.

permit proper correlation of these l ine references with the binary program,

To
I
1

a copy of the symbolic f i l e i s made during loading with the addresr of the
I

(Ili: I 1 I

first and last assembled words expl ic i t ly appended t o each l ine . Since the

program is not moved around during editing, these numbers do not change

except locally.

is rewritten without t h i s information.

When a debugging sersion isfoomplete, the edited symbolic

t We i l l u s t r a t e t h i s with an example. Consider the symbolic and resu%ting
I

binary I
200 s1 A,B (200,201) 51 LDA A I STAB 201
202 i ADD C
203 STORE D,E 203,204 STA D

STA E 204

ADD C

I

I

I

52 mu s1 (;eos,m) 52 mu s1 29j

t202, 2021
I

I
1
I

and the edit ing command

,I s2-1 insert before line S2-1 1
SUB F i

c; i

I

I

I
I

1

I i

c

The implementation of these commands is quite straightforward. One

ent i re ed i t command is collected and the new text, if any, is assembled.

Then the changed core addresses are computed and the awropriate record of

the symbolic f i l e rewritten.

The scheme has two drawbacks: it does not work properly for rkips of

more than one instruction or for subroutine ca l l s which pick up arguments

from following locations, and it leaves core i n a rather conf'using s ta te ,

especially a f te r several patches have been made a t the same Location.

first d i f f icu l ty can be avoided by changing large enough segments of the

The

symbolic. The second can be alleviated by reassembly whenever things get

too unreadable.

The only other published approach t o tha problem of patching binary

programs automatically is tha t of Evans "71 , who keeps relocation information

and relocates the ent i re program af te r each change. This procedure is not

very fas t , and i n any event is not pract ical for a rystem w i t h no relocation.

EFFICIENCY

The IMP system depends for i t 8 v iab i l i ty on f a s t asaembly. The

implementation techniques discussed i n t h i s paper have permitted the first

version of the assembler t o a t ta in the unremarkable but satisfactory speed

of 200 l ines per second. Simple character handling hardware wauld probably

double assembly speed on simple assemblies and produce even greater impravment

on programs w i t h many macros and repeats.

Using the la t te r figurea, we deduce that a program of 10,OOO instruction@,

a large one by most standards, w i l l load i n a second$. This number indicates

tha t the cost of the IMP approach is not a % * a l l unreasonable -- far more

computer time, including overhead, is 1Llcely t o be spent i n the debugging operations

I
~

i
,

I r

I C
I 9

24.

which f o u a J t h i s load.

poseible t o save the binary core image and thus avoid reloading.

When on lymhor changes are made it is, of course,

In sp i te of the speed of the aaaembler, it is possible tha t a relocatable

loader might be a desirable adjunct t o the eystem. There a re ' no basic rea80ne

why it should not be included.

As t o the size of the system, the aasembler is about 300 instructions,

the debugger and edi tor about 2000.

ACKNOWCEDGMElJTS

The ideas in t h i s paper awe a great deal t o many stimulating conversations

between the author and Peter Deutsch. I am especially indebted t o him for the

idea tha t all st r ings i n the input can be handled unifortnlyirwith s t r ing brackets.

A system very similar t o t h i s one has been implemented by him fo r the CDC 3100.

5 .

1.

2.

3.

4.

5 .

6.

7.

REFERENCES

M. Halpern, "XPOP - A Metalanguage Without Metaphysics," Proc. AFIPS

Conf., Vol. 5 (Fall, 1964)

G. Mealy, "Anatomy of an Assembly Syetem," RAND Corporation (Dec. 1962)

C . N. Mooers, "TRAC, A Procedure-Describing Language fo r the Reactive

Typewriter," -- Corn. ACM r?, 3, pp. 215-219 (March, 1966)

I
The MIDAS Assembly Program, internal memorandum, M I T , Cambridge, Massachusette

S. Boilen e t al , "A Time-sharing Debugging System for a Small Computer,"
I

AFIPS Conf. Proc. 23 (1963 FJCC), Spartan Books, Washington D. C.,
~

PP* 51-58 I

-

I

L. P. Deutsch and B. W. Lampson, "DDT - Time-sharing Debugging System I

Reference Manual," Project GENIE Doc. 30.40.10 (May 1965)

Thomas G. Evans and D. L. Darby, "DEBUG - An Extension t o Current Online

Debugging Techniques," Corn. ACM - 8 5 (May 1*), pp. 321-35

