Y L LTV R
|

 Fand Hefos

INTERACTIVE MACHIN?—LANGUAGE PROGRAMMING
|

Butler W. Lampson

University of Californius, Berkeley

Dogcument Nq. 30.50.11
Revised October 11, 1966
Office of the Secretary of Defense
Advanced Research Projects Agency

Washington 25, D.C.

ABSTRACT

|
}

An integrated system is descrived for writing and debugging programs
in an interactive environment. It includes complete facilities for sym-
bolic‘examination and modification of the binary‘program énd‘data which‘
can be used\in conjunction with very powerful mecro, conditional and string-
handlihg features. Assembly is dilrectly into core, at =z speed of about

200 lines per second, 8o that relocatable binsry is eliminsted. During

- debugging, changes made in the binary program can be eutomatically 1n¢or~

porated into the symbolic. The system as a whole permits machine language

progrems to be written and debugged with much less effort than is called

for by conventional techniques.

INTRODUCTION

The problems of machine language programming, in the broad sense of
coding in which it is possible to write each instruction out expliecitly,
have been curiously neglected in the literature. There are still many

problems which must be coded in the hardware language of the computer on

which they are to run, either because of stringent time and space requirements -

or because no suitable higher level language is avallable.

It is a sad fact, however, that a large number of these problems never
run at all becausgvof the inordinate amount of effort required to write and
debug machine language programs. On those that are undertsken in spite of
this obstacle, a great deal of time is wasted in struggles between programmer
and computer which might be avoided if the proper systems were available.

Some of the necessary components of these systems, both hardware and software,
have been developed and Intensively used at a few installations. To most
progreammers, howeVer, they remain as unfamiliar as other tools which are
presented for the first time below.

In the former category fall the most important features of a good
assembler [1,2]: macro-instructions implemented by character substitution,
conditional agsembly instructions, and reasonably free iinking of independently
éssembled programs. The basic components of a debugging system are also known
but relatively unfamiliar [5,6]. PFor these the essential prerequisite is an
interactive environment, in which the power of the computer is avallable at a
console for long periods of time. The batch processing mode in which large
systems are operated today of course precludes interaction, but progrems for
small machines are normally débugged in this way, snd as time-sharing becomes

more wide-spread the interactive environment will become common.

It is clear that interactive debugging systems must have abilities
very different from those of off-line systems. Large volumes of output are
intolersable, so that dumps and traces ere to be avoided at all costs. To take
the place of dumps, selective examiIation and alteration of memory loesations is
provided. Traces give way to breakpo#nts, which cause control to return to the
system st selected instructions. Iﬁ ia elso essential to escmpe from the
switches-and-lights console debugging common on small machines without adeqﬁate
software. To this end, type-in and type-out of information must be symbolic
rather than octal where this is convenient. The goal, which can be very nearly
achieved, is to make the sgymbolic representation of an instruction.produced by
the system identical to the»original symbolic written by the user. The emphasis
18 on convenience to the user and rapidity of communication.

The combination of an assembler and a debugger of this kind is = powerful
one which can reduée by a factor of perhaps five the time required to write and
debug a machine language program. A full system for interactive machine language
programming (IMP), however, can do much more and, if properly designed, need not
be more difficult to implement. The baslic ideas behind this system are these:

1) Complete integration of the assembler and the debugging system, so that
all input goes through the same processor. Much redundént coding is thus eliminated,
together with one of two different langusges serving the same purpose: to specify
instructions in symbolic form. This concept requires that code be assembled
directly into core (or into a core image on secondary storsge). Relocatable
output and relocatable loaders are thereby done away with.

A remark on terminology: it will be convenient in the sequel to speak of
the "assembler" and the "debugger" in the IMP system. These terms should be

understood in the light of the foregoing: different parts of the same language

are being referred to, rather than distinct languages.

N

2) Commands for editing the symbolic source program. The edit commends
simultaneously modify the binary program in core and the symbolic on secondary
storage. Corrections made during debugging ere thus automatically incorporated
inté the symbolie, znd the labor of keeping the latter current is almost eliminated.

3) A powerful string-handling capability in the assembler which makes it
quite easy to write macros for compil;ng algebraic expressions, to take a 'popular
example which csn be handled in a few other systems, but rather clumsily. The'
point is not that one wants to write such macros, but that in particular appli-
catiéns one may want macros of 2 similar degree of complexity.

' These matters are discussed in more detail in the following. We considervthe
assembler first and then the debugger, since the command language of the latter
makes heavy use of the assembler's features.

Before beginning the discussion, it may be well to describe briefly the
machine on which this system is implemented. It is a Scilentific Data Systems 930,
a 2 microsecond, single address computer with indirect addresgsing and one index
register.. Our system includes a drum which is large enough to hold for each user
all the symbolic for a program heing debugged, together with the system, a core
image of the program and some tables. Backup storage of at lebst this size is
essential for the editing features of the IMP system. The rest of the system could

be implemented after a fashion with tapes.

C

The Basic Assembler

The input format of the assembler was originated on the TX-0 at MITL It
has been adopted by DEC for most Af its machines, but is unknown or unpopular
elsewhere in the industry. Although it looks strange at first, it has sub-
stantial adventazges in terms of éimplicity, both for the user and for the system.
The latter is » non-negligible consideration, equally often ignored and gver—
emphasized.

The basic idea is that the assembler processes each line of input as an
egpression~(unless it is a directive Or macro call)[h} The expression is
evaluated and the value is put into core at the word addressed by the location
counter, after which the location counter is advenced by 1. Expressions are
made up of operands, which may be symbols, constents, numeric or alpha-
numeric, and perenthesized subexpressions; and operators. Available operators
are +, -, ¥, /, .AND, .OR, .NOT with their usual meaning and precedence;

.E (equals), .G (greater), .GE, .L, .IE, .NE, which are binary operators with
precedence less than +, and yield 1 or O depending on whether the indicated
relation holds between the operends or not; and #, a unary operator with lowest
precedence which causes its operand to be taken as a‘literal. This means that

it is assigned a storage location, which is the same as the location assigned

to other litersls with the same value, and the address of thig location is the
value of the literal. Blanks have the following aignificance:.gny atring of
blanks not at the beginning or end of aﬁ expression is taken as a single plus
sign. An expression is terminated by carriage return or semi-colon. Several
instructions may therefore be written on one physical line., This trivial feature

proves in practice to have significant advantages.

It is not immediately clear how instructions are conveniently
written as expressions, and in fact the scheme used depends on the fact
that the object machine is a single-address, word‘oriented computer with
a reasonable number of modifiers in a single instruction. It would work
on the PDP-6, but not on the IBM 7030.

The idea is simple: all operation code mnemonics are predefined |
symbols with ﬁalues equal to the octal éncodings of the instructions.

On the SDS 930, for instance, LDA (load A) is defined as 7600000 (all
numbers are in octal). The expression LDA+200 then evaluates to 7600200.‘
When the convention about spaces is invoked, the expression

LDA 200
evaluates to the same thing, which is just the instruction we expect
from this symbolic line in a conventional assembler,

Modifiers are handled in the same spirit. In the 24 bit word of the
930 there is an index bit, which is the second from the left, and an in-
direct bit, which is the tenth., With the predefined symbols

I=40000
X=20000000

the expression LDA I 200 X

evaluates to 27640200. In more conventional form it would look like
this: LDA* 200,2

There is little to choose between them for brevity or clarity. Note that
the order of the terms in the expression is arbitrary.

The greatest advantages of the uniform use of expressions accrue to
the assembler, but the programmer gains a good deal of flexibility.
Examples will readily occur to the reader.

Using this convention the implementation of the basic assembler is

very simple. Essentially all that is required is an expression analyzer

(i)

and evaluator, which will not run to more than three or four hundred in-
structions on any machine. Because all assemblyﬂis into core, there is
no such thing as relocatability.

Two rather conventional methods are provided for defining symbols.

A symbol appearing at the beginning of a line a,nq féllowed by a comma is
defined to be the current value of the location couqter. Such a 5ymboi
may not be redefined. In addition, a line such as

SYM=L600
defines SYM. Any earlier definition is simply overridden.
The right side may of course be any expression which can be evaluated.

The special symbol . refers to the location counter. It may appear
on the left of a = sign. Thus, the line

A, =, ko
is equivalent to

A B3S ko
in a conventional assembler.

Note that the first punctuation character in a line of input to the
assembler must be comma or space. The character . is not a punctuation
character, but behaves exactly like a letter. Symbols reserved by the
system begin with dot ordinarily. For convenience in forming negative
addresses, the symbol .. is provided with a permanent value such that ..-1
is ~1 truncated to the address field. On the 930, a two's complement
machine with a 1k bit sddress field, .. s h0000: |

Strings of characters encoded in ASCII mey be written surrounded by single
or double quotes, ' or ". If the string is less than 4 characters in length,
it is equivalent to the number obtained by left-justifying it in a 2l bit

word. Otherwise, it must appear alone on a line and generates enough words

|

v

N

to accommodate all its characters. Strings in simple quotes are scanned for ¢
and & (see below); those in double quotes are taken literally.

The characters space * gignal a comment, yhich is‘ignored up to the next
carriage return. An initial % also has this effect.

There remains one point about the basic assembler which is crucially im-
portant to the implementation: the treatment of undefined symbols. When én
expression is encountered during assembly, there is no guarantee that it can be‘
evaluated, since all the symbols in it may not be defined. This is the reason

why most assemblers are two pass: the first pass serves to define the symbols.

The increase in speed obtained by loocking at the symbolic only once is so great,

‘however, that it is worth a good deal of trouble. Even if every expression

contains an undefined symbol on the first pass, it still takes only one-fifth
as long to evaluate the already analyzed expressions as to read the input again, and
this for a program with no macros. The assembler therefore keeps track of un-
defined expressions explicitly. |

There is a general way of doing this, in which the undefined expression,
translated for convenience into reverse Polish, is added to a list of such
expressions, together with the address of the word it is to occupy. At suitable
intervals this list‘is scanned and all the newly defined expressions are evaluated
and inserted in the proper locations. For complex expressions there is no avoiding
some such mechanism, and it has the advantage of simplicity. It is, however,
wasteful of storage and also of time, since an expression may be examined many
times while it is on the list before it can be evaluated. One important case can
be treated much more efficiently, and this is the case of an instruction with an
undefined address, which includes perhaps 90 per cent of the occurrences of

undefined expressions.
For example, when the assembler sees this code:

X, BRU A *BRANCH UNCONDITIONAL
IDA B '
A, STA C

o

.the instruction at X has an undefined address which becomes defined when

the label A is encountered. This situation can be kept track of by putting
in the symbol table entry for A the location of the first word containing A
as an address. In the address of this word we put the location of the second

such word, and so build a list through all the words containing the undefined

symbol A as an address. The list is terminated by making the address field

point to itself. When the symbol is defined we simply run down the chain and fill
in the proper value. This scheme will work as long a8 the address field contains
only A, since there is then no other information which must be preserved. Note
that no storage is wasted and that when A is defined the correct address can

be filled in very quickly.

C

Strings and Macros

The description of the basic assembler is now complete, except for a few
non-essential details, and we turn to the macro and string handling facility.
There is a uniform method for delimiting strings of characters, which may be

i1llustrated by the assignment of such a string as the value of a symbol:

i
A = <B,(C,D),E,F > “

In order to describe the result of using A after this assignment, we intro-
duce a distinction between the appearance of a symbol in a literal and in a
normal context.

A symbol inside string brackets < > or single quotes or in a macro argument
is'in a literal context; all other contexts but one are normel. In a normal con-
text, the value of the symbol, whether a string or a number, is substituted for
the symbol. 1In a literal context, on the other hend, the characters of the
symbol are passed om unaltered. The case of a symbol on the left side of an
assignment is an exceptional one; such a symbol is of course not normally
evaluated.

To permit the value of a symbol to be obtained in a literal context, the
convention is introduced that a colon preceding the symbol causes it to be
evaluated if the colon is at the top level of parentheses, brackets and quotes.
If its value is a string, the characters of the string replace the symbol; if
it is & number, the shortest string of digits which can represent the number in
the prevailing radix replaces the symbol. Colon in a normal context is illegal.

For convenience in delimiting string names a second colon may follow a name
préceded by a colon. This second colon serves only to delimit the name and is
otherwise ignored. Thus if

_AB = <XYZ>

then <:AB> = <XYZ> and <:AB:CI> = <XYZCD>

10.

There are times when it is desirable to force evaluation of a symbol'in
8 normal context when it would normal;y pass unevalusted. The character &
preceding the symbol hes this effect; it is exactly like : exceptbth&t it acts

\ .
only in a normel context. Continuing the previous example: N

S

VW&AB = VWXYZ and oloe, AABEPA = XY2PQ ab with s 7

&AB = 12 is equivalent to XYZ = 12

A string may be thought of as having two kihds of structure:
1) Tt is composed of a sequence of cheracters

2) It is composed of a sequence of substrings delimited by commas
not enclosed in parentheses, brackets, or quotes.

With reference to the first structure, a single character may be selected by

pre s

8 subscript enclosed in brackets. Referring to the string assigned to A, we
note that

© Al2] is <,>, A[6] is <>, and A[7] is <)>.
By en obvious extension of this notation,

A[3,7) is<(C,D)> and A[9,11] is <E,P>.

Subscripts which reference the substring structure are enclosed in
pérentheses. Thus |

A(l) = and A(2) = <C,D>.

Note that a single pair of parentheses surrounding e substring is removed.
Subscripting may be iterated:

A(2)(2)=<D>.

Subscriﬁting is applied only to a string-velued symbol which is in a normal
context or is evaluated by a colon. Subscripting of a name on the left side of
an essignment forces it to be evaluated even if it is not preceded by a colon.

Two operations, .L and .IC, determine respectively the number of substrings
and the number eof charactérs in their arguments. Thus

I(A)=k, .L(A(2))=2 and .LC(A)=11.

11.

o

Havipng dealt with the general machinery for handling'strings, we now

~ turn to the ‘slight refinement which adds macros with argumentsz to the system,

| This takes the form of & modification to the 6rdinary line assigning a

string to a symbol, which permits an argument string to be specified. Thus
3TCORE <ARG> =
<.RPT.FOR T=1,.L(ARG(2)),1
- <ST&ARG(1) ARG(2)(T)>>

defines a macro with two arguments, the first a string which, when

appendéd to <ST> creates a store instruction, and the second a list of

locations to be stored into. Whenever STORE is used, the string of

characters beginning with the first following non-blank character and

ending with a line delimiter or unmatched right perenthesis is made the

velue of ARG. The string which is the value of STORE is then substituted

for it as usual.

STCORE might be called with

~ STORE A,(81,32,83)

which is, because of the definition, equivalent to

RPT.FOR T=1,3,1
<STA <81,52,83>(T)>
To complete the expansion we must consider the .RPT directive which
ﬁas béenVused above. This directive causes the string which follows to be
scaﬁhed repeatedly. It takes one of two forms:
1. JRPT N<...>
which causes N repetitions
k2.' .RPT.FOR J:nl,nZ,n3 <>
\whiéh causes (n2- nl)/n3+1l repetitions with J initially set %o nl,
énd then incremented}by n3 until it exceeds n2., Zero repetitions are

possible. The n3 may be elided if it is 1.

12, -

.
S

The STORE macro call sbove may now be seen to expand into
3TA 51
STA 32

STA 33 ‘4

We illustrate with two further examples. The first is a generalized

MOVE macro which takes as its arguments a sequence of pairs of lists. The

first 1ist of each pair specifies the locations to load from, while the
second gives the corresponding locations to store into. A list may of
course have only one element.

~ MOVE <ARG> =
<.RPT.FOR S1=1,.L(ARG),2 :
*THIS LINE STEPS THROUGH THE PAIRS OF LISTS
<.RPT.FOR S2=1,.L(ARG(S1))
¥THIS LINE STEPS THROUGH THE ELEMENTS OF ONE PAIR OF LISTS

< LDA ARG(S1)(s2)
STA ARG(S1+1)(82) >>>

thus

MOVE A,B,C,D

beconmes
IDA A
STA B
IDA C
STA D
S0 does

MOVE (A4,C),(B,D)

Suppose that we have some two-word data structures to manipulate;
We ean attach to the name of each structure a string of the form <A,B>.
A is the address of the first word of the structure, B of the second. .
A macro can do this and agsign the storage,
W <ARG> =
< TWS1=TWS+1
ARG (1)=<TW :TWS, TW: TWS1>
TWEIWS, O

TWETWS1, O
TWS=TWS+2 >

Now, if we call TW twice after setting TWS to 1:

™ A
™ B

we will have given A the value <IW1,TWZ> and B the value <TW3,TW.> and
defined the four ™ symbols,
We can now use A and B in the MOVE macro. In fact
MOVE A,B

expands to

LbA Twl
STA TW3
LDA IW2
STA TWh

With the addition of one moré device we can proceed to the definition

of a very grandiose macro. The directives .IF and .ELSF, used thus:

JF OB <L o>
EISF E, <...>

.EiSF'En <iL>
cause each Ei in turn to be evaluated until one ig greater than O, The
string following this one is then scanned and the rest of the structure
ignoréﬂ.
*THIS MACRO COMPILES AN ARITHMETIC EXPRESSION CONSISTING OF SiNGLE—i

¥LETTER VARIABLES, BINARY + AND - AND PARENTHESES., IT CALLS THE
*¥MACRO ERROR IF THE EXPRESSION IS NOT WELL FORMED.

ARITH <ARG> =
< EXPR=<:ARG(1).> %APPEND ., TO THE EXPRESSION
STK=<*> *TIITIALIZE THE STACK WHICH HANDLES
*¥PARENTHESES
J=1 *INITIALIZE THE CHARACTER POINTER
TI=0 *INTITIALIZE THE TEMPORARY STORAGE COUNTER

*IF TEMPORARY STORAGE IS REQUIRED IT IS ASSIGNED AS TEMP].,
*¥TEMP2, ETC., AND TI KEEPS TRACK OF THE NEXT AVAILABLE LOCATION.

X1 *THIS IS THE MACRO WHICH DOES THE WORK
JOF T NE LT <ERRCR> >

¥CHECK THAT EXPRESSION WAS NOT TERMINATED BY A RIGHT PARENTHESIS.

.

L J
T

*THI3 MACRO COLLECTS A SUB-EXPRESSION CONSISTING OF OPERANDS
*¥3TRUNG TOGETHER WITH + AND -. IF THE SUBEXPRESSION IS A SINGLE
*¥VARIABLE, COP (CURRENT OPERAND) WILL BE THAT VARIABLE ON.EXIT.
¥OTHERWISE IT WILL BE EMPTY.

L1 =
< COP = <¥¥¥> ¥ENGURE THAT COP IS NOT EMPTY INITIALLY
*AN EMPTY COP MEANS THAT CODE HAS BEEN ASSEMBLED LEAVING A VALUE
*IN THE A REGISTER. IF COP IS A LETTER, IT IS THE VARIABLE
*WHICH IS THE CURRENT OPERAND.

OPERAND *¥GET THE FIRST OPERAND
.RPT .FOR E=1,1,0 *E IS SET TO 2 WHEN THERE ARE NO MORE + OR -
, *SIGNS
< T=":EXPR[J]"' *EXPECTING AN OPERATOR OR TERMINATION
J=J+1
IFT JE'.' .ORT E ') <E=2>

*SET E TO TERMINATE THE LOOP IN THIS CASE.

.ELSF T .E '+' <COMPILE ADD,ADD>
.ELSF T .E '-' <COMPILE SUB,(CNA;ADD)>

*IF A + OR - IS PRESENT, GET THE SECOND OPERAND AND COMPILE CODE.

ELSF 1 <ERROR> *OTHERWISE, ERROR
>> _ *CLOSE LOOP AND MACRO

#¥THIS MACRO COLLECTS THE SECOND OPERAND OF A BINARY OPERATOR AND
*CONSTRUCTS CODE TO PERFORM THE SPECIFIED OPERATION., IT USES ITS
*¥FIRST ARGUMENT IF THE FIRST OPERAND IS IN THE A REGISTER, ITS
*SECOND ARGUMENT IF THE SECOND OPERAND MUST BE IN A AND THE FIRST
*PAKEN FROM MEMORY.
COMPILE <CARG> =
< OPERAND _ %¥GET THE SECOND OPERAND
JF O LIc(CoP) .G O
#IN THIS CASE THE SECOND OPERAND IS A SINGLE VARIABIE.
< .IF .IC (PREVOP) .G 0 <LDA PREVOP>

*IF THE FIRST OPERAND IS ALSO A VARIABIE (OR A TEMP LOCATION)
*BRING IT INTO A

CARG(1) coOP > *AND COMPILE CODE
JEISF 1 <CARG(2) PREVOP>

*OTHERWISE THE SECOND OPERAND MUST BE IN A, AND THE FIRST IN MEMORY
CoP=<< > >

¥SET COP TO INDICATE A VALUE IN A AND CLOSE THE MACRO.

15.

*THIS MACRO COLLECTS AN OPERAND, WHICH MAY BE A PARENTHESIZED

*SUBEXPRESSION
OPERAND=
< T = ':EXPR[J]' *GET THE NEXT CHARACTER
J=J+1 (#TT SHOULD BE A IETTER GR (
T .E (! ‘ ‘

< .TF .IL(COP) .E O

*IF WE ALREADY HAVE A VALUE IN A IT MUST BE SAVED IN 'I'EMPO'RARY
- #STORAGE WHILE THE SUBEXPRESSION IS EVALUATED.

< T = T +1:

STA TEMP&TI *¥CONSTRUCT A TEMP LOCATION TO SAVE IT IN
 COP=<TEMP:TI> > *AND REMEMBER IT IN COP

STK=<:COP, :STK> *STICK COP ON THE FRONT OF STK

X1
~.IF T .NE '(* <ERROR>

‘E=1 #RESET THE TERMINATION SWITCH FOR X1
PREVOP=< : STK(1)> *3SET PREVOP TO THE OLD COP WHICH WAS SAVED

STK=-< sTK(2, .L(STK) > >
*REMOVE OLD COP FROM STK AND TERMINATE THIS CASE. X1 HAS SET COP
.ELSF T .GE 'A' AND T .ILE 'Z'

*IF T IS A IETTER (RECALL THAT THE CHARACTER CODE IS ASCII)

< PREVOP=<:COP>
COP=<:EXFR[J-1]> >
.ELSF 1 <ERROR> >

' ‘This macro, called by
ARTTH ((A+B) (c-D))
would generate

IDA &
‘ADD B
- STA TEMP1
DA C
~SUB D
- CNA
- ADD TEMF1

| Note hhat there are only three lines in the definition which actuallv generate

‘ code. The ﬂemporaf? stornge location TFMP& must be defined clsewhere

: The 1mplementation of all this is quite straightforward. When a string is

encnuntered it is collected character by character, due attention being paid to
; cclons, amparsands, brackets and quotes, and stored away. When it is referenced,

:the routine which delivers characters to the assembler, which we will eall

16.

17.

CHAR, is switched from the input medium to the saved string. This process
is of course recursive. When the string which is the current source of
characters ends, CHAR is switéhed back to the string if was working on before.
A1l the various occurrences of strings ere treated perfectly uniformly, except
that in the case of macro definitions the substrings of the argument string
are delimited when the latter is collected to improve the efficiency. Perfectly
arbitrary nesting of the various constructs is posaible because of the recur-
siveness of the string collection and reference routines.

fIn the interests of efficiency the .IF directive is not handled in this

way, since its subject string is scanned either once or not at all. All that

18 necessary is a flag which indicates whether an .ELSF directive is to be

considered or ignored.

The debugging system

An interactive debugging system should not be designed for the occasional
user. Its emphasis must be on completeness, convenience and conciseness, not
on highly mnemonic commands and self-explanatory output. The basic capa-

bilities required are quite simple in the main, but the form is all important

~ because each command will be given so many times.

One‘essential, completely éymbolic input and output, is half taken care
of by the assembler. The other half is easler than it might seem: given a
word to be printed in symbolic form, the symbol table is scanned for an exact
match on the opcode bits. If no match is found, the word is printed as a

number. Otherwise the opcode mnemonic is printed, indirect and index bits are

- checked and the proper symbols printed, and the table is scanned for the largest'

symbol not greater than the remainder of the word. This symbol 1s printed out,

followed if necessary by a + and a constant.

The most fundamental commands are single characters, poasibiy precedéd
by modifiers. Thus to examine a register the user types

/x1-3; . LDA I NUTS+2
vhere fhe systém's response ig printed in cepitals. This command may be

preceded by any combination of modifiers:

for printout in symbolic form

for octal radix

for decimal radix

for relative (symbolic) addresa

.for @bsolute address

for printout as ASCII characters

for printout as signed integer

for no printing of addresses

(load) for no printing of register contents

HE2HMoODrHmoona

The modifiers hold until the user types a cafriage return or gives another
/.command.

For examining a sequence of registers, the commands + and - are availsble.
The former examines the preceding register, the latter the following register.
In the absence of a carriage feturn the modifiers of the last examination hold.
The -» command examines the register addressed by the one last exemined.

The contents of a register may be modified after examination simply by
typing the desired new contents. Note that the ansémbler is always part of
the command processor; and that debugging commends are differentiated by their
format from words to be assembled (as noted above, an assembler line has comma -
or space as its first punctuation character, and all debugger 1ines have some
other initiel punctuation character). Furthermore, debugging commands may occur
in macros, so tﬁat very elaborate operations can be constructed and then called
on with the tWO\Or three cheracters of a macro name.

To increas? the flexibility of debugging macros, the unary operator @
is defined. Th? value of é@ SYM 3 is the contents of location SYM 3. With

this operator m%cros may be defined to type out words depending on very

for printout in constent form ‘ i

18.

19.

complicated conditions. A simple example is

TEA>= ‘
< .RPT.FOR TEMP=A(1),37777,1

*SCAN THROUGH ALL OF STORAGE STARTING AT THE LOCATION GIVEN BY
¥THE FIRST ARGUMENT

< .IF @ TEMP .E A(2)
*IF THE CURRENT LOCATION MATCHES THE SECOND ARGUMENT, THE SCAN IS OVER

</TEMP; _ *FRINT OUT THE CONTENTS
TEMP1=TEMP *SAVE THE ADDRESS
TEMP=37777 *AND TERMINATE THE SCAN
>

Called with TG 100,20
it will type out the first location after 100 with contents greater than 20.
Another important command causes an expression to be typed in a specified
format. Thus if SYM has the value 1253 then
=sym; 1353
would be the result of giving the = command. All the modifiers are availeble
but the normal mode of typeout is constant rather than symbolic. If no
expression is given, the one most recently typed is teken. Thﬁs, after the
above command, the user might try

s=; SYM (the system's response, the symbolic equivalent of
1253, follows the ;)

Tt is often necessary to search storage for occurrences of a particular

word. This may be done with a macro, as indicated above, but long searches

.~ would be quite slow. ‘A faster search can be made with

texpression;

which cauges all thé locations matching the specified;expresaioh to be typed out.

The match may be masked, and the bounds of the search arevadjustable. This command

takes all the typeout'modifiefs as well as
E which searches for a specified effective address

(including indexing and indirect addressing)

X which searches for all exceptional words (which do not mateh).

- For additional flexibility the user may specify a macro which will be executed

each time a matching word is found.

In addition to being able to examine and modify his program, the user also
needs to be able to run it. To this end he may start it at a specified location
with ,G 1ocation
If he wishes to monitor its progress he may insert breakpoints st certain locations
with the command

;B location
This causes execution of the program to be interrupted at the specified location.
Control returns to the system, which types some useful information and awaits
further commends. An alternate form of this command is

»B location,macro name
which causes the specified macro to.be executed at each bresk, instead of
returning control directly to the typewriter. Very powerful conditional tracing
may be done in this way.

After a break has occurred, execution of the program may be resumed with
the ,P command. The breakpoint is not affected. To prevent another break until
the breakpoint has been passed n tinm;the form

\n; may be used. Modifiers may precedé the command.

To step through the program instruction by instruction the commend ,S

may be used instead of ,P. Tt allows one instruction to be executed and then

breaks again. $n; allows n instructions to be executed before bresking. A
fully automatic trace has been deliberately omitted, but presents no difficulties

in principle.

THE EDTITOR

~ There remains one feature of great importance in the IMP system, the
symbolic editor. The debugger procides facilities, which heve already been
described, for modifying the contents of core. These modifications,
however, are not recorded 1n the symbolic version of the program. To

7
permit this to be done, so that reloadipg will result in a correctly updated

|
binary program, several commands are available which act both on the asuembler

binary and on the symbolic.
Thié operaﬁion'ia not as straightforward as it might sppear, since
there iskno one to onnrebrreapbndence between lines of symbolic and wordi
of binary. Addresaeé given to the debuggei of course refer to core locetions,
but for editing it is more cohvenient'tq address lines of symboiic. To

permit proper éorrelation of these liﬁe references with the binary progream,

8 copy of the symbolic file is made dnring loading with the address of the

first and last assembled words explicitly appended to each line. Since the

'"program is not moved around during editing, these numbers do not change

except locally. When a debugging session 1s:-complete, the edited symbolic

418 rewritten without this information.

We illustrate this with an example. Consider thé'uymbolic end resulting

binary
s1 MOVE A,B (200,201} s1. IDA A . 200
STA B 201
ADD C gzoz 202; ADD C 202
STORE D,E (203,204 STA D 203
: L STA B 204
s2 BRU S1 (205,205) 82 BRU S1 205

and the editing command

, I §2-1 insert before line S2-1
SUB ¥ ‘ ,

o}

8

which gives rise to the following.

Sl MOVE A,B (200, 201) . 81 . IDAA 200
STA B - 201

ADD C 202,1512) BRU .END 202

SUB F .1513,1513) : BRU .END 1 203

‘ STORE D, E 1514, 204) - STA E 204
g2 BRU S1 205, 205) 82 BRU 81 205
: .END ADD C - 1512
| SUBF . 1513

| : STA D 1514

BRU SL 4 1515
BRU S1 5 1516

All the BRU (branch unconditional) instructions are inserted to guarantee
that the right thing happens if any of the instructions causes a skip. The
alternative to this rather gsimple-minded scheme appeara to be complete

réassembly; which has been rejected as too'élow. The arrangement outlined

will deal correctly with patches made over other patches; although the

binary may come to look rather peculiar the symbolic will alireys be readable..

To give the user access to the readable symbolic the command

,L - symbolic line address(, symbolic line address];
(where the contents of the brackets is optionelly included) causes the |
specified block of 1iﬁes to be printed. Two other edit commends are avallable:

»D - symbolic line address[,symbolic line address],

which deletes the gpecified block of . lines, and’

sC same arguments;
which deletes and then inserts the text which follows.' Deleting S1 1 from the
original program would result in binary as follows

s1 IDA A
- BRU .END
BRU..END 1
STA D
. STAE
82 BRU S1
.END STAB o
BRU 81 3 |

The implementation of these commands is quite straightforuard. One
entire edit command is collected and the new text, if any, is assembled.
Then the changed core addresses are computed and the appropriate record of
the symbolic file rewritten.

The scheme has two drawoacksz it does not work properly for skips of
more than one instruction or for subroutine calls which pick up arguments
from following 1ocations, end it leaves core in a rather confusing stete,
especially after several patches have been made at the same location. The
first difficulty can be avoided by changing large enough segments of the
symbolic. The second can be alleviated by reassembly whenever things get
too unreadable. |

The only other pwblished approach to the problem of patching binery
programs automatically is that of Evén£7} who keeps relocation information

and relocates the entire program after each change. This procedure i8 not

very fast, and in any event is not practical for a aystem with no relocation;

EFFICIENCY , -

The IMP system depends for its viebility on fast asséﬂbly. The

| implementation technigues discussed in this paper have permitted the first

version of the assembler to attain the unremarkable but satisfactory Bpeed

of 200 lines per-éecond. Simple character handling hardware would probably

double assembly speed on simple assemblies and produce even greater improvement

on programs with many macros and repeats.

Using the latter figures, we deduce that a program of 10,000 instructions, -

8 large one by most standards, will load in 25 seconds. This number 1ndicates

that the cost of the IMP approach is not at’all unreasonsble -- far more

computer time, 1nc1uding overhead, is 1ikely to be spent in the debugging operationa

23.

2k,

which follow this load. When only minor‘changes are made it is, of course,
possible ﬁo save the binary core image and thus avoid reloading.

In spite of the speed of the assembler, it is posaibie that a reiocatable
loader might be a desirable adjunct to the syatem; Thére éré‘nb basic reasons
why it should not be included.

As %o the sgize of the system, the assembler is about 500 instructiona,.

the debugger and editor about 2000.

ACKNOWLEDGMENTS

The ideas in thisvpaper owe a great deal to many stimulating conversations
between the author snd Peter Deutsch. I am especlally indebted to him for the
idea that all strings in the input can be handled uniformlywwith string brackets.

A system very similar to this one has been implemented by him for the CDC 3100.

REFERENCES

1. M. Halpern, "XPOP - A Metalanguage Without Metaphysics,” Proc. AFIPS

Conf., Vol. 25 (Fall, 1964)
G. Mealy, "Anatomy of an Assembly System," RAND Corporation (Dec. 1962)

C. N. Mooers, "TRAC, A Procedure-Describing Language for the Reactive
Typewriter,"” Comm. ACM 9, 3, pp. 215-219 (March, 1966)

4. The MIDAS Assembly Program, internal memorandum, MIT, Cembridge, Massachusetts

5. S. Boilen et al, "A Time-Sharing Debugging System for a Small Computer,"
AFIPS Conf. Proc. 23 (1963 FJCC), Spartan Books, Weshington D. C.,

pp. 51-58
6. L. P. Deutsch and B. W. Lampson, "DDT - Time-Sharing Debugging System
Reference Manual," Project GENIE Doc. 30.40.10 (May 1965)
7. Thomas G. Evans and D. L. Darby, "DEBUG - An Extension to Current Online

Debugging Techniques,” Comm. ACM 8 5 (May 1965), pp. 321-335

